Synthesizing Robot Designs
(Sanjeev Khanna and Tarik Tosun)

Objective:
Design an algorithm that, given two robot designs, can synthesize an optimal new design that implements both.

Motivation:
Enabling a modular robot design system allowing novice users to create new designs using a collection of base designs.
Methodology

• Proceeding from a primarily topological perspective
 o Eventual goal of incorporating many more real-world constraints

• Robot designs represented as configuration graphs
 o Capturing two designs in a single design requires a suitable notion of configuration graph embedding
Example

(A) “Walker” design

(B) “Grasper” design

(C) Design embedding both “walker” and “grasper”
Embedding Definition

• Our abstraction of a design:
 o Designs are represented as labeled graphs – \(G(V,E)\)
 o Some additional information is captured
 ▪ Functionality of each joint – \(f(v)\) for each vertex \(v\) in \(V\)
 ▪ Set of end effectors - \(X\)
 ▪ Lengths of edges – \(\ell(u, v)\)
 o Resulting design specification is a 4-tuple: \(\langle G(V, E), X, f, \ell \rangle\)
• We say that a design \(G_1\) embeds in a design \(G_2\) if there exists a 1-1 mapping \(\Phi\) from vertices in \(G_1\) to vertices in \(G_2\) such that the adjacency structure of \(G_1\) is preserved in \(G_2\) when edge lengths of \(G_1\) are scaled by a factor of \(\lambda\).
Conditions to embed G_1 in G_2

- **Vertex-to-Vertex Correspondence**
 - For each vertex $u \in V_1$, there must be a corresponding vertex $v \in V_2$ and this vertex must subsume the functionality of u:
 $$ f_2(\varphi(u)) \geq f_1(u) $$

- **Edge-to-Path Correspondence**
 - For each edge $(u, v) \in E_1$, there must be a corresponding path $P_{u,v} \in G_2$
Conditions to Embed G_1 in G_2

• **Vertex-Disjointness of Paths**
 - For each pair of edges $(u_1, v_1), (u_2, v_2) \in G_1$, the corresponding paths $P_{u_1v_1}, P_{u_2v_2} \in G_2$ must be vertex-disjoint.

• **Uniform Length Scaling**
 - The length of each path in G_2 must be proportional to the length of its corresponding edge in G_1.
 - $\ell_2(P_{uv}) = \lambda \ell_1(u, v)$
Example

Design 1

Design 2 embeds design 1

Design 3 does not embed design 1; violates path vertex-disjointness
Algorithm to Test Embeddability

• Assume that design graphs are trees rooted at a specific vertex

• Dynamic programming algorithm progresses upwards through two trees, beginning at the end effectors
 o We define subproblem as subtree embedding

• Create table $T(a,b)$, where $T(a,b) = 1$ iff the subtree of node a in G_1 embeds in the subtree of node b in G_2 such that $\Phi(a) = b$.
Embedding Detection Algorithm

To embed a subtree rooted at a node a in G_1 in a subtree rooted at a node b in G_2, two conditions must be satisfied:

1. The **functionality** of node b subsumes the functionality of node a, $f_2(b) \supseteq f_1(a)$

2. For each child a_i of a, there must be some descendant b'_j of b that embeds a_i without violating either the length condition or the vertex-disjointness condition
How do we check condition 2?

• Form a bipartite graph $H(P, Q)$
 ◦ P are the children of a, $\{a_1, a_2, \ldots, a_p\}$
 ◦ Q are the children of b, $\{b_1, b_2, \ldots, b_q\}$
 ◦ Form edge (a_i, b_j) if for some descendant b'_j of b_j, both:
 ▪ $\ell_1(a, a_i) = \lambda \ell_2(b, b'_j)$, and
 ▪ $T[a_i, b'_j] = 1$

• We seek a matching that assigns each node in P to a distinct node in Q using edges in $H(P,Q)$.

Additional Constraints

• We are incorporating more real-world constraints.

• **Edge Rigidity:**
 o Joints aren’t always able to “lock” in place and form rigid paths
 o A *rigidness* characteristic may be associated with edges and a *locking* characteristic may be associated with joints
 o Easy to verify that rigid edges map to paths with only locking joints while checking the length condition.
Additional Constraints

• **Non-Uniform Length Scaling:**

 o Uniform length scaling requirement can be relaxed

 o Define a scaling tolerance $\tau_i((u, v)) \in [0, 1]$ for each edge $(u, v) \in E_i$.

 o Length constraint becomes an inequality

 ▪ Lower bound of $(1 - \tau)\lambda \ell$
 ▪ Upper bound of $\frac{\lambda}{(1-\tau)} \ell$

 o $\tau((u, v)) = 0$ corresponds to an equality constraint

 o $\tau((u, v)) = 1$ corresponds to complete relaxation of the length condition on paths embedding (u, v)
Ongoing Work

• Algorithm for design merging
• More detailed specification of joint functionality
• Higher-order reasoning in embedding detection
 o Kinematic redundancy and equivalence involving more than one joint
An Illustration of Design Merging

(A) Four-fingered gripper design

(B) Four-legged walker design

Merged design embeds both (A) and (B)

= Pitch Joint

= Yaw Joint

= Roll Joint